If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x-130=0
a = 1; b = 9; c = -130;
Δ = b2-4ac
Δ = 92-4·1·(-130)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{601}}{2*1}=\frac{-9-\sqrt{601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{601}}{2*1}=\frac{-9+\sqrt{601}}{2} $
| 85=2t²-14t+55 | | 10=-3x+5x-4 | | 2^t+3/7=4 | | (d+5)(4d+1)=0 | | 34.5+(4x+26-8.5)=180 | | 1/6(x+5)=-4/3 | | x²+9=-7 | | a+5=5a | | (7x+3)-(8x-1)= | | 8(w-1)-4=(2w-3) | | 9x+18-5x=2=4x | | 3x-35=70 | | 3x+35=400 | | 3(6p-1)=11p—45 | | -3(x+4)=3+4(x-8) | | 2x=2(x+18) | | 2(4z−6−6)=170−46= | | x+7/x-7=5 | | 3(3n-6)=72 | | X+x+x+x=51 | | 5(2x-4)=-2(3x-5) | | 1.2y-4=0.2y+10 | | 8=k-5 | | (0.2x-45)=90 | | 4x+x-9+4x=6 | | 7(x-1)=2(2x+1) | | (15x/2)-1=5 | | 9u=1=26 | | (x+23)=(3x+1) | | 2a+27=5a | | (5x+3)(6x+7)=0 | | 36=5x(x) |